Search results

1 – 3 of 3
Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 18 January 2024

Tulsi Pawan Fowdur and Ashven Sanghan

Energy production and distribution is undergoing a revolutionary transition with the advent of disruptive technologies such as the Internet of Energy (IoE), 5G and artificial…

Abstract

Energy production and distribution is undergoing a revolutionary transition with the advent of disruptive technologies such as the Internet of Energy (IoE), 5G and artificial intelligence (AI). IoE essentially involves automating and enhancing the energy infrastructure: the power grid from grid operators to energy generators and distribution utilities. The IoE also relies on powerful connectivity networks such as 5G, big data analytics and AI to optimise its operation. By incorporating the technology that employs ubiquitous devices such as smartphones, tablets or smart electric vehicles, it will be possible to fully exploit the potential of IoE using 5G networks. 5G networks will provide high speed connections between devices such as drones, tractors and cloud networks, to transfer huge amounts of sensor data. Additionally, there are many sources of isolated data across the main energy production units (generation, transmission and distribution), and the data is increasing at phenomenal rates. By applying AI to these data, major improvements can be brought at each stage of the energy production chain. Tying renewable energy to the telecommunications sector and leveraging on the potential of data analytics is something which is gaining major attention among researchers and industry experts. This chapter therefore explores the combination of three of the most promising technologies i.e. IoE, 5G and AI for achieving affordable and clean energy, which is SDG 7 in the UN Sustainable Development Goals (SDGs).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

1 – 3 of 3